Laboratory of Skin Aging and Cancer Prevention

Head of laboratory : Gian-Paolo Dotto, M.D., Ph.D.

Department of Biochemistry, University of Lausanne, CH; Cutaneous Biology Research Center, Mass. Gen. Hosp., Boston, Mass.

Research Program Overview :

Photo by Liv Bruce on Unsplash

Cancer risk is exponentially increasing with aging and aging-related diseases. Cumulative exposure to environmental agents are connected with increased cancer risk.  There are significant sex-related differences in aging that may contribute to sexual dimorphism in cancer susceptibility.

Aging has been connected with senescence of cells, which can function both as a fail safe mechanism against cancer development but also facilitate this process. The dual tumor-suppressing and -promoting function of cellular senescence depends on cell types and cell-cell interactions. 

Cancers do not arise solely from a single deregulated group of cells but rather as a combined result of alterations in tissues and organs associated with the aging and cellular senescence processes in widespreading cancer fields.

Within this context, our main research focuses on genetic and epigenetic determinants of field cancerisation, a very frequent condition consisting of multifocal and recurrent lesions at various stages of neoplastic progression connected with widespread aging-associated changes of surrounding tissues.

We focus on field cancerization of the skin, as a benchmark of major clinical significance. We are exploring genetic and epigenetic determinants of squamous cell carcinoma and melanoma development, with a specific focus on precursor lesions and their risk of malignant conversion.

In this context, we are exploring genetic and epigenetic determinants of cancer variability across gender and race. This is a topic of great interest as there are significant differences in cancer susceptibility between individuals of different sex and race that cannot solely be attributed to socioeconomic and behavioural factors and instead, are the likely result of an interplay with biological factors.

Cloccchiatti el al., JCI 2014

Field Cancerization : bad seed / bad soil hypothesis. Environmental insults, like UV irradiation or smoke, can target both epithelial and stromal compartments of organs such as skin, head/neck, lung, bladder or breast, with ensuing genetic and/or epigenetic changes. Establishment and spreading of “cancer fields” is the likely result of an interplay between epithelial and stromal alterations, with the latter playing an equally important and possibly primary role. The situation leading to multifocal and recurrent neoplastic lesions may be analogous to that of a bad plant difficult to eradicate.  This may be due to roots deeply embedded in the terrain or the spreading of bad multiple seeds, growing in the presence of a permissive or favorable soil. An alternative possibility with important conceptual implications is that the main problem is the soil itself. A bad soil could corrupt properties of otherwise perfectly good plants or seeds. According to this view, unless the soil is corrected, various forms of prevention and intervention would be of little or no use.

Recent Highlights

NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin, Katarkar, Bottoni et al., Nature Communication, 2020

Sustained Androgen Receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. Ma, Ghosh et al., J. Exp. Med. 2020/2021


Sandro Goruppi

Soumitra Ghosh

Jovan Isma

Esther Revai Lechtich

Atul Katarkar

Min Ma

Berna Ozdemir

Luigi Mazzeo

Tatiana Proust

Anastasia Samarkina

Beatrice Tassone

Markus Kirolos Youssef

Representative papers (out of 111)

Ma, M., Ghosh,S., Tavernari, D., Katarkar, A., Clocchiatti, A., Mazzeo,L., Samarkina, A., Epiney, Yu, Y._R. Ho, P.-C., Levesque, M.P. Özdemir, B.C., Ciriello, G., Dummer, R. and G.P. Dotto(2020) Sustained Androgen Receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J. Exp. Med. 218. PMID: 33112375

Katarkar, A., Bottoni, G., Clocchiatti, A., Goruppi, S., Bordignon, P., LazzaroniF., Gregnanin, I., Ostano, P., Neel,V., and G.P. Dotto (2020) NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin. Nature Comm. In press. doi:10.1038/s41467-020-18919-2 

Bottoni, G., Katarkar, A., Tassone, B., Ghosh, S., Clocchiatti, A., Goruppi, S., Bordignon, P., Jafari, P., Tordini, F., Lunardi, T., Hoetzenecker, W., Nell, V.,Lingner, J., and G.P. Dotto (2019). CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nature Comm. 29;10(1):3884. doi: 10.1038/s41467-019-11785-7.

Bordignon, P., Bottoni, G., Xu, X., Popescu, A., Truan, Z., Guenova, E., Kofler, L., Jafari, P., Ostano, P., Röcken, M., Neel, V., and G.P. Dotto (2019). Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Rep 28(9): 2358-2372.e6. doi: 10.1016/j.celrep.2019.07.092.

Al Labban, D., Jo, S.H., Ostano, P., Saglietti, C., Bongiovanni, M., Panizzon, R., and Dotto, G.P. (2018). Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B. J. Clin. Invest. 128, 2581-2599,

 Clocchiatti, A., S. Ghosh, M.G. Procopio, L. Mazzeo, P. Bordignon, P. Ostano, S. Goruppi, G. Bottoni, A. Katarkar, M. Levesque, P. Kölblinger, R. Dummer, V. Neel, B.C. Ozdemir, and G.P. Dotto. (2018). Androgen receptor functions as transcriptional repressor of Cancer Associated Fibroblast activation. J. Clin. Invest. 128(12): p. 5531-5548 doi: 10.1172/JCI99159.

Goruppi, S., Jo, S.H., Laszlo, C., Clocchiatti, A., Neel, V., and Dotto, G.P. (2018). Autophagy Controls CSL/RBPJkappa Stability through a p62/SQSTM1-Dependent Mechanism. Cell Rep 24, 3108-3114. PMID: 30231994

Goruppi, S., M.G. Procopio, S. Jo, A. Clocchiatti, V. Neel, and G.P. Dotto (2017). The ULK3 Kinase Is Critical for Convergent Control of Cancer-Associated Fibroblast Activation by CSL and GLI. Cell Rep 20:2468-2479,  doi: 10.1016/j.celrep.2017.08.048

Kim, D.E, Procopio,M.G., Ghosh, S., Jo, S.H, Goruppi, S., Magliozzi, F., Bordignon, P., Neel, V., Angelino,P.and Dotto G.P. (2017) Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J. Exp. Med. 214, 1-20, doi: 10.1084/jem.20170724

Procopio, M.G., Laszlo, C., Al Labban, D., Eun Kim, D., Bordignon, P., Jo, S., Goruppi, S., Menietti, E., Ostano, P., Ala, U., Provero, P., Hoetzenecker, W., Neel, V., Kilarski, W., Swartz, M.A., Brisken, C., Lefort, K. and Dotto, G.P. (2015) Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nature Cell Bio. 17, 1193–1204  doi:10.1038/ncb3228 

Recent reviews

Dotto, G.P. (2019) Gender and sex—time to bridge the gap, EMBO Molecular Medicine,DOI: 10.15252/emmm.201910668

Özdemir, B.C. and Dotto, G.P. (2019) Sex hormones and anticancer immunity, Clinical Cancer Research, DOI:10.1158/1078-0432.CCR-19-0137

Goruppi, S., A. Clocchiatti, and Dotto, G.P. (2019). A role for stromal autophagy in cancer-associated fibroblast activation.Autophagy,15:4,738 739, DOI: 10.1080/15548627.2019.1569936

Özdemir, B.C. and Dotto, G.P., Racial Differences in Cancer Susceptibility and Survival: More Than the Color of the Skin? Trends in Cancer, 2017; 3, 181-197

Dotto, G.P, and Rustgi, A., Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell 2016; 29, 622-637

Clocchiatti, A., Cora, E.,, Zhang, Y. and Dotto, G.P. Sexual dimorphism in cancer. Nature Reviews Cancer 2016; 16: p. 330-9